Entradas

Ramas matemáticas

Imagen
Aunque las Matemáticas parecen ser, para el lego en la materia, una sola cosa que trata de números y sus operaciones, en realidad es una ciencia con diversas ramas. De hecho la misma palabra "Matemáticas" está en plural, indicando que es algo múltiple y no unívoco.
Durante los estudios básicos, la Secundaria y el Bachillerato, la asignatura de Matemáticas se da en un bloque único; el profesor puede mencionar algunas de sus partes, como la aritmética, el álgebra o la geometría, pero no es hasta que uno ingresa en la Universidad cuando esas ramas se separan en disciplinas distintas, con nombres propios.
Cuando en mis años de preparación para matenavegante ingresé en la Facultad de Matemáticas, me sorprendió bastante tener solo cuatro asignaturas en el primer curso: Geometría, Álgebra, Análisis Matemático y Topología. La organización de las clases era bastante sencilla, cuatro horas cada mañana, con cada una de estas cuatro materias, y un recreo de media hora en medio. Entrába…

Construcción del rectángulo áureo

Imagen
Cuaderno de bitácora: recientemente hemos tenido la oportunidad de leer el magnífico libro El Código Secreto, de Priya Hemenway. Se trata de un libro sencillo en su contenido, ilustrado con una gran cantidad de imágenes, y a un precio muy asequible, dada la calidad de su impresión.
El libro está centrado en el estudio de la proporción áurea, en su origen y descubrimiento, su relación con la sucesión de Fibonacci, y su aparición en la naturaleza, el arte, el pensamiento y la mística.
La proporción áurea es aquella que se establece en un conjunto al que se divide en dos partes, de forma que la relación o razón entre el tamaño del conjunto y el de la parte mayor coincide con la razón entre la parte mayor y la menor.
Si esto lo visualizamos en un segmento limitado por dos puntos AB, la cuestión es determinar un tercer punto C en el interior del segmento tal que se dé la siguiente proporción entre las longitudes: AB/AC = AC/BC.

Si suponemos que AC = 1, AB = x y BC = x − 1, entonces la pro…

La fórmula sin apotemas

Imagen
Cuaderno de bitácora: hace ya bastante tiempo publicamos un artículo titulado Apotemas Falsas, en el que se explicaba que la conocida fórmula para calcular el área de un polígono regular, perímetro por apotema partido por dos, era una fórmula tramposa.

Debemos tener en cuenta que si sabemos el perímetro de un polígono regular, y por tanto conocemos la longitud del lado, entonces la apotema está determinada unívocamente por ese lado, es decir, no podemos "inventarnos" la longitud de la apotema una vez que tenemos el perímetro, pues si lo hacemos así lo más probable es que no pueda existir ningún polígono regular que cumpla con las dos medidas. Por tanto, debemos tener una fórmula en la que sólo intervenga el lado del polígono.

A continuación vamos a calcular esa fórmula explícita que sólo depende del lado para hacer el cálculo del área. Para ello necesitamos echar mano de la trigonometría.
Supongamos que tenemos un pentágono regular como en el dibujo:
Para calcular el área d…

El Ojo de Horus

Imagen
En la antigua mitología egipcia, Seth, la encarnación de la envidia y el mal, asesinó a su propio hermano Osiris, el dios bueno, y posteriormente Horus, el hijo de Osiris, le hizo la guerra a Seth. Durante uno de los enfrentamientos, Seth hirió a Horus en el ojo izquierdo y lo dividió en partes. Con la ayuda de Ra y Thoth, Horus recompuso el ojo y lo convirtió en un instrumento muy poderoso, el Udyat, que no solo le permitía ver, sino que tenía cualidades mágicas.
Los habitantes de Egipto consideraban el Udyat como uno de los amuletos más poderosos. Protegía de las maldiciones y de la magia negra, remediaba las enfermedades oculares y potenciaba la vista. Por alguna razón el símbolo del Udyat también fue empleado en las matemáticas. Los escribas egipcios emplearon cada una de sus seis partes para representar una fracción. Las fracciones representadas eran las potencias negativas de 2, desde 1/2 hasta 1/64.

Si querían representar 1/2, dibujaban la parte interior del ojo, 
para 1/4 era…

Una moneda para un sorteo

Imagen
Cuaderno de bitácora: en relación con la situación que se dio en cierto colegio de Granada, en la que se explica lo erróneo del método empleado por algunos Directores para realizar sorteos de plazas escolares, podemos reflexionar qué se puede necesitar para hacer un sorteo probabilísticamente justo con los mínimos elementos posibles.

Cuando se estudia probabilidad, ¿cuál es el ejemplo más simple que se pone de experimento aleatorio? Suele ser el lanzamiento de una moneda. Cuando echamos una moneda al aire, al caer puede quedar expuesta una de sus dos caras (cara o cruz), tenemos, por tanto, dos sucesos elementales posibles C = cara, X = cruz.

Pero repitiendo el lanzamiento, obtenemos combinaciones de sucesos elementales que nos pueden ayudar, por ejemplo, a realizar un sorteo justo con la ayuda de tan solo una moneda.

Tomemos el ejemplo que tratábamos en el caso del sorteo de las plazas escolares. Se trata de elegir aleatoriamente un número entre 111 posibilidades. ¿Se puede hacer c…

[El Problema de la Semana] Negocios con trampa

Imagen
Veamos el primer problema que se le plantea a los grumetes en este nuevo periplo:

Te ofrecen un par de negocios. En el primero vas a ganar 10 € el primer día, 20 € el segundo día, 30 € el tercer día, y así sucesivamente hasta llegar al día 15. En el segundo ganas 0.10 € el primer día, 0.20 € el segundo día, 0.40 € el tercer día, 0.80 € el cuarto día, y así sucesivamente hasta el día 15. Si te ofrecen escoger entre uno de los dos negocios, ¿con cuál te quedarías?
La solución, más abajo de la ilustración.

[La ilustración se ha tomado de Mathspace, en un artículo donde se pone un ejemplo de una progresión geométrica. El artículo está en inglés.]
SOLUCIÓN:
En el primer negocio tenemos una progresión aritmética. Se gana 10 € el primer día, 20 € el segundo, 30 € el tercero, etc. Entonces tenemos una sucesión de números que empieza en 10 y va aumentando, sumándole 10 cada día. Claramente si son quince días, el día quince se ganará 150 €. El problema está en sumar: 10 + 20 + 30 + ... + 150 No …

[El Problema de la Semana] Las zanahorias

Imagen
El problema de hoy va de un conejo afortunado:
Un conejo tiene un número de zanahorias en su jaula. Cada día se come un cuarto de las zanahorias que le quedan. Después de cuatro días se ha comido 350 zanahorias. ¿Cuántas zanahorias había al comienzo?
La solución, bajo los pies del conejo.


SOLUCIÓN:
Este problema se puede resolver razonando con fracciones:
El primer día se come 1/4 de zanahorias, luego quedan 3/4.
El segundo día se come 1/4 de las que le quedan, que son 3/4. 1/4 de 3/4 es igual a 3/16, y le quedan 3/4 – 3/16 = 9/16.
El tercer día se come 1/4 de 9/16, que son 9/64, y le quedan 9/16 – 9/64 = 27/64.
El cuarto día se come 1/4 de 27/64, que son 27/256, y le quedan 27/64 – 27/256 = 81/256.
En los cuatro días se ha comido 1/4 + 3/16 + 9/64 + 27/256 = 175/256.
Las 350 zanahorias que se ha comido son los 175/256 del total, luego el total es 350 · 256 / 175 = 512.
En la jaula había un total de 512 zanahorias.
Este problema también se puede resolver con una ecuación, llamándole x …